Exercise 54

(a) Graph the function

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

How many horizontal and vertical asymptotes do you observe? Use the graph to estimate the values of the limits

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} \quad \text{and} \quad \lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

- (b) By calculating values of f(x), give numerical estimates of the limits in part (a).
- (c) Calculate the exact values of the limits in part (a). Did you get the same value or different values for these two limits? [In view of your answer to part (a), you might have to check your calculation for the second limit.]

Solution

Determine the horizontal asymptotes by calculating the limits of f(x) as $x \to \pm \infty$. In the second limit, make the substitution, u = -x, so that as $x \to -\infty$, $u \to \infty$.

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{x \to \infty} \frac{\sqrt{x^2 \left(2 + \frac{1}{x^2}\right)}}{3x - 5} = \lim_{x \to \infty} \frac{x\sqrt{2 + \frac{1}{x^2}}}{3x - 5} = \lim_{x \to \infty} \frac{\sqrt{2 + 0}}{3 - \frac{5}{x}} = \frac{\sqrt{2 + 0}}{3 - 0} = \frac{\sqrt{2}}{3}$$
$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{u \to \infty} \frac{\sqrt{2(-u)^2 + 1}}{3(-u) - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2u^2 + 1}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2u^2 + 1}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \lim_{u \to \infty} \frac{\sqrt{2 + \frac{1}{u^2}}}{-3u - 5}$$
$$= \frac{\sqrt{2 + 0}}{-3 - 0}$$
$$= -\frac{\sqrt{2}}{3}$$

Therefore, the horizontal asymptotes are $y = \frac{\sqrt{2}}{3}$ and $y = -\frac{\sqrt{2}}{3}$.

www.stemjock.com

To find the vertical asymptotes, set what's in the denominator equal to zero and solve for x.

$$3x - 5 = 0$$
$$3x = 5$$
$$x = \frac{5}{3}$$

Make a table with large positive and negative values of x to see what happens as $x \to \pm \infty$. Note that $\sqrt{2}/3 \approx -0.471405$.

x	f(x)
-10000	-0.471326
-1000	-0.47062
-100	-0.463688
-10	-0.40507
10	0.567098
100	0.479406
1000	0.472192
10000	0.471483

Below is a graph of f(x) versus x with the asymptotes labelled.

